TidyTuesday: Incarceration Trends
Analyzing data for #tidytuesday week of 1/22/2019 (source) # LOAD PACKAGES AND PARSE DATA library(tidyverse) library(scales) library(lubridate) library(RColorBrewer) prison_raw <- read_csv("https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2019/2019-01-22/prison_population.csv") prison <- prison_raw Process the raw data total <- prison %>% filter(pop_category != 'Total' & pop_category != 'Male' & pop_category != 'Female') %>% select(county_name, urbanicity, pop_category, population, prison_population) %>% na.omit() %>% group_by(county_name, urbanicity, pop_category) %>% summarize(population = sum(population), prison_population = sum(prison_population)) %>% ungroup() %>% group_by(county_name, urbanicity) %>% mutate(pct_population = population / sum(population), pct_prisoner = prison_population / sum(prison_population)) What is the proportion of population:prisoners per demographic group ? total %>% filter(pop_category != 'Other') %>% ggplot() + geom_point(aes(pct_population, pct_prisoner), alpha = 0.1, size = 2, color = 'grey') + geom_smooth(aes(pct_population, pct_prisoner, color = pop_category), size = 1.2, se = FALSE) + theme_light() + scale_y_continuous(labels = percent_format()) + scale_x_continuous(labels = percent_format()) + labs(x = "County Population", y = "Prisoner Population", color = "", title = "Comparison of county to prison population by ethnicity from 1970 to 2016", subtitle = "Specific groups are overrepresented in the prisoner population", caption = "Source: Vera Institute of Justice") + geom_abline(linetype = 'dashed') + scale_color_brewer(palette = 'Set1') + theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), legend.position = 'top', panel.background = element_rect(fill = 'gray97', color = 'gray97', size = 0.5, linetype = 'solid')) ...